- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0001000003000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Geng, Xinbo (4)
-
Tong, Lang (2)
-
Xie, Le (2)
-
Bhattacharya, Anirban (1)
-
Caluya, Kenneth F. (1)
-
Guan, Xiaohong (1)
-
Halder, Abhishek (1)
-
Lee, Kiyeob (1)
-
Mallick, Bani (1)
-
Ming, Hao (1)
-
Ojaghi, Pegah (1)
-
Shakkottai, Srinivas (1)
-
Sivaranjani, S. (1)
-
Xia, Bainan (1)
-
Yang, Lei (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Stochastic Uncertainty Propagation in Power System Dynamics using Measure-valued Proximal RecursionsHalder, Abhishek; Caluya, Kenneth F.; Ojaghi, Pegah; Geng, Xinbo (, IEEE Transactions on Power Systems)We present a proximal algorithm that performs a variational recursion on the space of joint probability measures to propagate the stochastic uncertainties in power system dynamics over high dimensional state space. The proposed algorithm takes advantage of the exact nonlinearity structures in the trajectory-level dynamics of the networked power systems, and is nonparametric. Lifting the dynamics to the space of probability measures allows us to design a scalable algorithm that obviates gridding the underlying high dimensional state space which is computationally prohibitive. The proximal recursion implements a generalized infinite dimensional gradient flow, and evolves probability-weighted scattered point clouds. We clarify the theoretical nuances and algorithmic details specific to the power system nonlinearities, and provide illustrative numerical examples.more » « less
-
Lee, Kiyeob; Geng, Xinbo; Sivaranjani, S.; Xia, Bainan; Ming, Hao; Shakkottai, Srinivas; Xie, Le (, iScience)
-
Geng, Xinbo; Tong, Lang; Bhattacharya, Anirban; Mallick, Bani; Xie, Le (, 2021 IEEE Power & Energy Society General Meeting (PESGM))
An official website of the United States government
